
Objectives and Challenges

• Wearable robots like lower-limb exoskeletons have great

potential for mobility restoration and human augmentation

• Challenge 1: Required intensive human testing

• Challenge 2: Required handcrafted control laws

Our Lightweight and High Torque Soft Exoskeleton
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• Our learning method incorporates both physics-informed

modeling and data-driven learning:

• Physics-informed modeling of human musculoskeletal

dynamics, exoskeleton, and human-robot interaction

• Data-driven learning through publicly available human

kinematic motion capture dataset

• Our learning method consists of three neural networks that

are trained simultaneously for co-evolution:

• Motion imitation network

• Muscle coordination network

• Exoskeleton control network

• Dynamics randomization was used to facilitate Sim-to-real

transfer of the trained control policy

Our  Portable and Tethered Soft Exoskeleton 

Systems

Significant Energetic Cost Reductions 

on Versatile Activities

• 8 human subject (5 males, 3 females) experiments utilizing a

lightweight, untethered and compliant hip exoskeleton

• Reduced significant metabolic cost by 24.3% for walking, 15.2%

for running, and 14.5% for stair climbing

• More metabolic cost reduction than state-of-the-art robots

• Provides smooth transitions between different activities

Experiment-free Learning of Exoskeleton 

Controller In Simulation

• Drawbacks of state-of-the-art methods to get exoskeleton

controllers:

• Requires intensive human experiments for training

→ This adds formidable cost when applied to another

activity or participant

• Typically for a single activity with steady-state motion

→ It cannot handle versatile activities or transitions

between different activities

• Learning controllers entirely in simulation eliminates the

need for human experiments. However, it is still unavailable

for wearable robotics community. Key challenges are:

• Incorporating controller design in the simulation

• Incorporating human-robot interaction in the simulation

• Our Solution:

• Eliminates the need for human experiments, learns the

exoskeleton controller purely from simulation, and

provides immediate energetic benefit to humans

• Provides synergistic assistance to different subjects for

walking, running and stair-climbing
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• We proposed a powerful electronics architecture using a

hierarchical structure with a high-level computer and a low-

level microcontroller.
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